193 research outputs found

    Failure study of fiber/epoxy composite laminate interface using cohesive multiscale model:

    Get PDF
    In this study, finite element modeling is performed to investigate the compressive failure of the composite sandwich structures with layered composite shells. An embedded debond area between the layered composite shell and the foam core is assumed as a defect. The composite shells are several plies of equal thickness Kevlar, carbon fiber composite, and E-glass composite with epoxy resin. Three different lay-ups, namely, (0°/90°/0°/90°/0°/90°), (45°/−45°/0°/90°/60°/−30°), and (60°/−30°/90°/0°/30°/90°) are considered for symmetric and asymmetric sequences. The work focuses on the importance of cohesive zone model versus the previously conducted numerical simulation and experimental results for buckling of sandwich composite structures. This enables one to account for delamination growth between shells and core and improve the correlation results with those of experiments. It has been shown that not only the cohesive model is capable of demonstrating delamination propagation, but it also correlates very well with the experimental data. By compiling user-defined cohesive mesoscale model in Abaqus simulation, the local and global buckling of the face-sheets can be precisely detected and response of sandwich structure becomes mesh independent, while mesh size is reduced

    Symmetrical and Antisymmetrical Sequenced Fibers with Epoxy Resin on Rectangular Reinforced Structures under Axial Loading

    Get PDF
    In this study, Finite element Method (FEM) evaluation is performed for the compressive failure of reinforced structures with layered composite shells under axial loading. In addition, embedded delamination between the reinforcing layered composite shells and the core is considered as a defect. The layered composite shells are made of 12 plies of equal thickness of Kevlar, CFC, and E-Glass with epoxy resin. Considering the orientation and laminate, three different layered composite shells, (0°/90°/0°/90°/0°/90°), (45°/-45°/0°/90°/60°/-30°), and (60°/-30°/90°/0°/30°/90°), are considered for symmetrical and antisymmetrical sequences. These results are obtained through ABAQUS simulations and subsequent analysis. The results show that symmetrical and antisymmetrical sequences can be used as an index for quality control and as a safety factor of composite shells produced by the hand lay-up technique in certain industrial processes. The delamination growth is also investigated with the help of cohesive elements. Buckling phenomenon occurred abruptly due to the fast propagation of delamination, having face/core debond

    Bree\u27s Diagram of A Functionally Graded Thick-walled Cylinder Under Thermo-mechanical Loading Considering Nonlinear Kinematic Hardening

    Get PDF
    n this paper, elasto-plastic analysis of a thick-walled cylinder made of functionally graded materials (FGMs) subjected to constant internal pressure and cyclic temperature gradient loading is carried out using MATLAB. The material is assumed to be isotropic and independent of tem- perature with constant Poisson\u27s ratio and the material properties vary radially based on a power law volume function relation. The Von Mises’ yield criterion and the Armstrong-Frederick non- linear kinematic hardening model were implemented in this investigation. To obtain the incre- mental plastic strain, return mapping algorithm (RMA) was used. At the end, the Bree\u27s inter- action diagram is plotted in terms of non-dimensional pressure and temperature which represents an engineering index for optimum design under thermo-mechanical loading

    Model-based Control of the Scanning Tunneling Microscope: Enabling New Modes of Imaging, Spectroscopy, and Lithography

    Full text link
    The invention of scanning tunneling microscope (STM) dates back to the work of Binnig and Rohrer in the early 1980s, whose seminal contribution was rewarded by the 1986 Nobel Prize in Physics for the design of the scanning tunneling microscope. Forty years later, the STM remains the best existing tool for studying electronic, chemical, and physical properties of conducting and semiconducting surfaces with atomic precision. It has opened entirely new fields of research, enabling scientists to gain invaluable insight into properties and structure of matter at the atomic scale. Recent breakthroughs in STM-based automated hydrogen depassivation lithography (HDL) on silicon have resulted in the STM being considered a viable tool for fabrication of error-free silicon-based quantum-electronic devices. Despite the STM's unique ability to interrogate and manipulate matter with atomic precision, it remains a challenging tool to use. It turns out that many issues can be traced back to the STM's feedback control system, which has remained essentially unchanged since its invention about 40 years ago. This article explains the role of feedback control system of the STM and reviews some of the recent progress made possible in imaging, spectroscopy, and lithography by making appropriate changes to the STM's feedback control loop. We believe that the full potential of the STM is yet to be realized, and the key to new innovations will be the application of advanced model-based control and estimation techniques to this system

    Performance Analysis of an Electromagnetically Coupled Piezoelectric Energy Scavenger

    Get PDF
    The deliberate introduction of nonlinearities is widely used as an effective technique for the bandwidth broadening of conventional linear energy harvesting devices. This approach not only results in a more uniform behavior of the output power within a wider frequency band through bending the resonance response, but also contributes to energy harvesting from low-frequency excitations by activation of superharmonic resonances. This article investigates the nonlinear dynamics of a monostable piezoelectric harvester under a self-powered electromagnetic actuation. To this end, the governing nonlinear partial differential equations of the proposed harvester are order-reduced and solved by means of the perturbation method of multiple scales. The results indicate that, according to the excitation amplitude and load resistance, different responses can be distinguished at the primary resonance. The system behavior may involve the traditional bending of response curves, Hopf bifurcations, and instability regions. Furthermore, an order-two superharmonic resonance is observed, which is activated at lower excitations in comparison to order-three conventional resonances of the Duffing-type resonator. This secondary resonance makes it possible to extract considerable amounts of power at fractions of natural frequency, which is very beneficial in micro-electro-mechanical systems (MEMS)-based harvesters with generally high resonance frequencies. The extracted power in both primary and superharmonic resonances are analytically calculated, then verified by a numerical solution where a good agreement is observed between the results

    A Comprehensive Analysis of MEMS Electrothermal Displacement Sensors

    Full text link

    Improvement of accuracy and speed of a commercial AFM using Positive Position Feedback control

    Get PDF
    The atomic force microscope (AFM) is a device capable of generating topographic images of sample surfaces with extremely high resolutions down to the atomic level. It is also being used in applications that involve manipulation of matter at a nanoscale. Early AFMs were operated in open loop. As a result, they were susceptible to piezoelectric creep, thermal drift, hysteresis nonlinearity and scan-induced vibration. These effects tend to distort the generated image. The distortions are often minimized by limiting the scanning speed and range of the AFMs. Recently a new generation of AFMs has emerged that utilizes position sensors to measure displacements of the scanner in three dimensions. These AFMs are equipped with feedback loops that work to minimize the adverse effects of hysteresis, piezoelectric creep and thermal drift on the obtained image using standard PI controllers. These feedback controllers are often not designed to deal with the highly resonant nature of an AFM's scanner, nor with the cross-coupling between various axes. In this paper we illustrate the drastic improvement in accuracy and imaging speed that can be obtained by proper design of a feedback controller. Such controllers can be incorporated into most modern AFMs with minimal effort since they can be implemented in software with the existing hardware

    Fast spiral-scan atomic force microscopy

    Get PDF
    In this paper, we describe a new scanning technique for fast atomic force microscopy. In this method, the sample is scanned in a spiral pattern instead of the well established raster pattern. A spiral scan can be produced by applying single frequency cosine and sine signals with slowly varying amplitudes to the x -axis and y -axis of an atomic force microscope (AFM) scanner respectively. The use of the single tone input signals allows the scanner to move at high speeds without exciting the mechanical resonance of the device and with relatively small control efforts. Experimental results obtained by implementing this technique on a commercial AFM indicate that high-quality images can be generated at scan frequencies well beyond the raster scans

    Static and Dynamic Solutions of Functionally Graded Micro/Nanobeams under External Loads Using Non-Local Theory

    Get PDF
    Functionally graded materials (FGMs) have wide applications in different branches of engineering such as aerospace, mechanics, and biomechanics. Investigation of the mechanical behaviors of structures made of these materials has been performed widely using classical elasticity theories in micro/nano scale. In this research, static, dynamic and vibrational behaviors of functional micro and nanobeams were investigated using non-local theory. Governing linear equations of the problem were driven using non-local theory and solved using an analytical method for different boundary conditions. Effects of the axial load, the non-local parameter and the power index on the natural frequency of different boundary condition are assessed. Then, the obtained results were compared with those obtained from classical theory. These results showed that a non-local effect could greatly affect the behaviors of these beams, especially at nano scale
    corecore